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The supplementary material is organized as follows:

• Sect.1: More experimental results including

– Analysis on the masked learning strategy, the geometry-
only edge decoder, and the iterative inference;

– Ablation studies on the choice of positional encoding
for representing edge coordinates;

– Qualitative evaluation for more testing samples on the
two structured reconstruction benchmarks (See out-
door_qualitative.pdf and indoor_qualitative.pdf).

• Sect 2: Details of our corner detection module adapted
from the HEAT edge classification architecture.

• Sect.3: Additional implementation details such as the
choice of hyper-parameters, training setups for different
experiments, training data preparation, and how we repro-
duced the competing methods.

1. Additional Experimental Results

Masked learning, geometry-only decoder, and iterative
inference: Table 1 complements the Table 4 of the main
paper by providing more details about the masked learn-
ing strategy the geometry-only decoder, and the iterative
inference.. The masked learning strategy alone marginally
improves the region scores while adding the geometry-only
decoder clearly boosts the region-level performance. These
results suggest that the image-aware decoder might over-
fit to the image features and neglect the geometric patterns
revealed by the coordinate features. The geometry-only
decoder could effectively alleviate the above issue as a regu-
larization by sharing weights with the image-aware decoder
and conducting geometry-only inference.
Choice of positional encoding: Table 2 provides an abla-
tion study for the choice of positional encoding for edge
coordinates. The first row shows that a proper positional
encoding is vital for region-level performance. Besides, the
learnable embedding is worse than the trigonometric encod-
ing, potentially because the trigonometric positional encod-
ing preserves useful ordinal priors (e.g., relative distance)
that are hard to be learned automatically from data.

Table 1. Detailed ablation study for masked learning strategy,
iterative inference, and the geometry-only (geom-only) decoder.
“Iter” denotes the number of inference iterations. The pre-trained
Faster-RCNN from ConvMPN [6] is used for corner detection.

Eval Type→ Edge Region

Mask Decgeom Iter Prec Recall F-1 Prec Recall F-1

- - 1 75.7 60.5 67.3 74.1 50.7 60.2

3 - 1 77.4 61.2 68.3 76.4 49.7 60.2
3 - 2 77.8 61.0 68.4 75.3 49.4 59.7
3 - 3 77.9 61.2 68.5 76.0 50.6 60.7

3 3 1 76.7 60.4 67.6 73.7 52.2 61.1
3 3 2 77.5 60.8 68.1 75.0 53.6 62.5
3 3 3 77.5 60.9 68.2 74.7 53.8 62.5

Table 2. Ablation study on the choice of coordinate encoding.
“Learn” means using a learnable embedding for each discrete value.
“Sin/Cos” is the trigonometric positional encoding used by HEAT.

Eval Type→ Edge Region

Coord Enc. Prec Recall F-1 Prec Recall F-1

∅ 67.2 58.9 62.7 29.7 39.6 33.9
Learn 76.2 61.2 67.9 75.3 49.7 60.7
Sin/Cos 77.5 60.9 68.2 74.7 53.8 62.5

More qualitative results The files outdoor_qualitative.pdf
and indoor_qualitative.pdf provide additional high-
resolution qualitative results for outdoor architecture
reconstruction and floorplan reconstruction, respectively.
The presentation formats are the same as the qualitative
figures in the main paper. Due to the size limit, we randomly
pick 100 testing samples for each task. Please enlarge the
figures to assess the details.

2. HEAT Corner Detection

This section explains the details of the corner detector,
which is an adaptation of our HEAT edge classification ar-
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chitecture. The HEAT-based corner detection and edge clas-
sification modules are trained end-to-end.
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Figure 1. The corner detection model adapted from HEAT ar-
chitecture, illustrated with image size 256×256. We take the
HEAT architecture (Fig.2a of the main paper) until the edge-
filtering module as the corner detector. Each node is a 4×4 super-
pixel. A ConvNet decoder takes the node features and produces a
256×256 confidence map, Non-maximum suppression (NMS) is
applied to the confidence map to produce the final corner detection
results.

Figure 1 illustrates our corner detection model adapted
from HEAT architecture. Pixels are the corner candidates
and thus become the nodes. Instead of making every pixel
in the 256×256 image space as a candidate, we make each
4×4 super-pixel as a node to reduce the memory cost. An
extra MLP takes the concatenated coordinate features of
the 16 pixels inside a super-pixel and produces the fcoord
for each node. After the image feature fusion, a ConvNet
decoder converts the 64×64×256 feature maps into the final
256×256 confidence map. The ConvNet decoder consists of
stacks of convolution layers and up-sampling layers, as well
as a final linear layer for producing the confidence. Non-
maximum suppression is applied to the confidence map to
produce the final corner detection results.

We train the above corner detection model jointly with
HEAT edge classification. The corner and edge models
share the same ResNet backbone. The training data for the
edge model are generated on the fly based on the corner
detection results. See Sect. 3 for details about training data
preparation.

3. Additional Implementation Details

Hyper-parameter and training settings. As mentioned
in the main paper, there are four binary cross-entropy (BCE)
losses in the full HEAT framework: one for corner and three
for edge. We use a weight of 3.0 (resp. 10.0) for positive
samples to balance the positive and negative samples for the
edge (resp. corner) BCE loss.

We apply non-maximum suppression (NMS) to the HEAT
corner prediction results to clean up the detected corners.

Non-maximum predictions inside a local 5×5 window are
suppressed. When using a pre-trained corner detection
model (i.e., the Faster-RCNN provided by ConvMPN [6])
in our ablation studies on the outdoor reconstruction bench-
mark, the number of training epochs is reduced from 800
to 500 as we only need to train the edge classification part
alone, and the corner BCE is discarded. All other training
settings are exactly the same as the full HEAT. For all exper-
iments, we simply take the checkpoint from the last training
epoch for evaluation.

Training data preparation. We conduct random flipping
and random rotation for data augmentation when training the
models on the outdoor reconstruction task. However, only
random flipping is applied for indoor reconstruction since
random rotation always makes the planar graph surpass the
image boundary.

For producing corner labels, we first produce a label map
with the same resolution as the input image, and then apply
a Gaussian blur (with sigma=2) to the label map to alleviate
the class imbalance.

For producing edge labels, we follow three steps: 1)
Match ground-truth corners with detected corners. A de-
tected corner and a ground-truth corner are matched if their
distance is smaller than 5 pixels and both of them are not
matched with other corners; 2) Generate training-time cor-
ner candidates. We produce the set of corner candidates by
merging all the detected corners and ground-truth corners,
but removing the ground-truth corners that are matched by
detected corners; 3) Enumerate corner pairs and assign edge
labels. We enumerate all pairs of corner candidates to gen-
erate the edge candidates. The label of an edge candidate is
true if and only if each of its endpoints is either a ground-
truth corner or a matched detected corner, otherwise the label
is false.

Running competing approaches. We explain how we run
the competing approaches to evaluate them on the two struc-
tured reconstruction benchmarks:
• HAWP [5]: We adapt the official HAWP implementation1

for the two structured reconstruction tasks with two modi-
fications: 1) we change the image resolution according to
the experimental setups and 2) we increase the number of
training epochs to make it the same as HEAT and LETR. We
found that increasing the number of training epochs does
not improve HAWP on its original wireframe parsing task,
but can clearly improve its performance on the structured
reconstruction tasks.
• LETR [4]: We adapt the official implementation of LETR2

for the two structured reconstruction tasks with three modifi-
cations: 1) we change the image resolution based on the ex-
perimental setups; 2) we search for the best hyper-parameter

1https://github.com/cherubicXN/hawp
2https://github.com/mlpc-ucsd/LETR
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for the number of “dummy query nodes” and change it from
1000 to 100, which is also consistent with the dataset stats
in Sect.3 of the main paper (the model with default settings
cannot converge on our two benchmarks); and 3) we run
a simple post-processing to merge neighbouring corners
within 10 pixels to get a cleaner planar graph. Note that we
strictly follow LETR’s three-stage training pipeline.
• ConvMPN [6] and Exp-cls [7]: We run the released official
checkpoints3 to get the quantitative evaluation results and
corresponding qualitative visualizations.
• Others: For other domain-specific approaches (i.e., IP [2],
MonteFloor [3], Floor-SP [1]), we directly borrow their
evaluation results from previous papers.
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